Evolución biológica

Introducción

La evolución biológica es el proceso continuo de transformación de las especies a través de cambios producidos en sucesivas generaciones, y que se ve reflejado en el cambio de las frecuencias alélicas de una población.

Generalmente se denomina evolución a cualquier proceso de cambio en el tiempo. En el contexto de las Ciencias de la vida, la evolución es un cambio en el perfil genético de una población de individuos, que puede llevar a la aparición de nuevas especies, a la adaptación a distintos ambientes o a la aparición de novedades evolutivas.

A menudo existe cierta confusión entre hecho evolutivo y teoría de la evolución. Se denomina hecho evolutivo al hecho científico de que los seres vivos están emparentados entre sí y han ido transformándose a lo largo del tiempo. La teoría de la evolución es el modelo científico que describe la transformación evolutiva y explica sus causas.

Charles Darwin y Alfred Russel Wallace propusieron la selección natural como principal mecanismo de la evolución. Actualmente, la teoría de la evolución combina las propuestas de Darwin y Wallace con las leyes de Mendel y otros avances genéticos posteriores; por eso es llamada Síntesis Moderna o Teoría Sintética. En el seno de esta teoría, la evolución se define como un cambio en la frecuencia de los alelos en una población a lo largo de las generaciones. Este cambio puede ser causado por una cantidad de mecanismos diferentes: selección natural, deriva genética, mutación, migración (flujo genético). La Teoría Sintética recibe una aceptación general en la comunidad científica, aunque también ciertas críticas. Ha sido enriquecida desde su formulación, en torno a 1940, por avances en otras disciplinas relacionadas, como la biología molecular, la genética del desarrollo o la paleontología.

El Lamarckismo, la suposición de que el fenotipo de un organismo puede dirigir de alguna forma el cambio del genotipo en sus descendientes, es una posición teórica ya indefendible, en la medida en que es positivamente incompatible con lo que sabemos sobre la herencia; y también porque todos los intentos por hallar pruebas de observación o experimentales, han fracasado.

El creacionismo, la posición de que en un grado u otro, los seres vivos tienen un autor personal consciente (léase Dios), es una posición religiosa o filosófica que no puede probarse científicamente, y no es por tanto una teoría científica. No obstante, en el marco de la cultura popular protestante y anglosajona, algunos se esfuerzan por presentarlo como tal; pero la comunidad científica en su conjunto considera tales intentos como una forma de propaganda religiosa.

Teoría científica

La evolución biológica es un fenómeno natural real, observable y comprobable empíricamente. La llamada Síntesis Evolutiva Moderna es una robusta teoría que actualmente proporciona explicaciones y modelos matemáticos sobre los mecanismos generales de la evolución o los fenómenos evolutivos, como la adaptación o la especiación. Como cualquier teoría científica, sus hipótesis están sujetas a constante crítica y comprobación experimental.

Dobzhansky, uno de los fundadores de la Síntesis moderna, definió la evolución del siguiente modo: «La evolución es un cambio en la composición genética de las poblaciones. El estudio de los mecanismos evolutivos corresponde a la genética poblacional.» [1] .

La síntesis moderna de la evolución se basa en tres aspectos fundamentales:

– La ascendencia común de todos los organismos de un único ancestro.
– El origen de nuevos caracteres en un linaje evolutivo.
– Los mecanismos por los que algunos caracteres persisten mientras que otros desaparecen.

Origen y desarrollo temprano de la vida

El origen de la vida

El origen de la vida, aunque atañe al estudio de los seres vivos, es un tema que realmente no es explicado en la teoría de la síntesis moderna de la evolución; pues ésta última sólo se ocupa del cambio en los seres vivos, y no de la creación y los cambios (evolución a moléculas más complejas) e interacciones de las moléculas orgánicas de las que procede.

No se sabe mucho sobre las etapas más tempranas y previas al desarrollo de la vida, y los intentos realizados para tratar de desvelar la historia más temprana del origen de la vida, generalmente se enfocan en el comportamiento de las macromoléculas, particularmente el ARN, y el comportamiento de sistemas complejos.

Sin embargo, si se esta de acuerdo que todos los organismos existentes comparten ciertas características, incluyendo la estructura celular y el código genético; los que estarían relacionados con el origen de la vida. (Para los científicos que consideran a los virus como seres vivos, si bien los mismos no tienen una estructura celular, evolucionaron a partir de organismos que sí las poseían, probablemente comportándose originalmente como transposones).

Ascendencia común

A partir de estas semejanzas, los científicos interpretan que ellas indican y serían la evidencia de que todos los seres vivos existentes comparten un «ancestro común», el cual ya había desarrollado los procesos celulares más fundamentales; aunque no hay acuerdo en la comunidad científica sobre la relación específica de los tres dominios de la vida (Archaea, Bacteria, Eukaryota). Siendo desde la teoría del ancestro común, el comienzo de las explicaciones que son dadas por la teoría de la síntesis moderna de la evolución; en relación a la historia evolutiva de la vida.

Así, a pesar de que los orígenes de la vida nos son todavía desconocidos en su totalidad, otros hitos relacionados a la historia evolutiva de la vida sí son bien sabidos. La aparición de la fotosíntesis oxigénica (hace alrededor de 3000 millones de años) y el posterior surgimiento de una atmósfera rica en oxígeno y no reductora, puede rastrearse a través de depósitos laminares de hierro, y bandas rojas posteriores producto de los óxidos de hierro. Éste fue un requisito necesario para el desarrollo de la respiración celular aeróbica, la cual se cree que emergió hace aproximadamente 2000 millones de años. En los últimos mil millones de años, organismos pluricelulares simples, tanto plantas como animales, comenzaron a aparecer en los océanos.

Poco después del surgimiento de los primeros animales, la explosión Cámbrica (un período breve de diversificación animal sin paralelo y notable, documentado en los fósiles encontrados en los sedimentos en Burgess Shale) vio la creación de la mayoría de los bauplans, o plan tipo, de los animales modernos. Hace alrededor de 500 millones de años, las plantas y hongos colonizaron la tierra, y fueron seguidos rápidamente por los artrópodos y otros animales, llevando al desarrollo de los ecosistemas terrestres con los que estamos familiarizados.

El surgimiento de nuevos caracteres y variación

Mecanismos de la herencia

En la época de Darwin, los científicos no estaban de acuerdo sobre cómo se heredan las características. Actualmente, el origen de la mayoría de las características hereditarias puede ser trazado hasta entidades persistentes llamadas genes, codificados en moléculas lineales llamadas ADN. El ADN varía entre los miembros de una misma especie y también sufre cambios o mutaciones, o variaciones producidas a través de procesos como la Recombinación genética.

Mutación

Darwin no conocía la fuente de las variaciones en los organismos individuales, pero observó que parecían ocurrir aleatoriamente. En trabajos posteriores se atribuyó la mayor parte de estas variaciones a la mutación. La mutación es un cambio permanente y transmisible en material genético (usualmente el ADN o el ARN) de una célula, que puede ser producida por errores de copia en el material genético durante la división celular y por la exposición a radiación, químicos o virus, o puede ocurrir deliberadamente bajo el control celular durante procesos como la meiosis o la hipermutación. En los organismos multicelulares, las mutaciones pueden dividirse en mutaciones germinales, que se transmiten a la descendencia, y las mutaciones somáticas, que (cuando son accidentales) generalmente conducen a malformaciones o muerte de células y pueden producir cáncer.

¿Por qué son importantes las mutaciones?

Las mutaciones introducen nuevas variaciones genéticas, siendo la principal fuente de evolución. En la teoría sintética, la mutación tiene el papel de generar diversidad genética sobre la cual actúa la selección natural, y también la deriva. Las mutaciones que afectan a la eficacia biológica del portador, y por tanto son objeto de la selección natural, pueden ser deletéreas (negativas) o beneficiosas. Las mutaciones beneficiosas son las menos frecuentes, aunque se conocen muchos ejemplos que afectan a rasgos variadísimos, como la resistencia a enfermedades o a estrés, la longevidad, el tamaño, la capacidad para metabolizar nuevas sustancias, una cicatrización eficiente de las heridas, etc. La mayor parte de las mutaciones son mutaciones neutras; no afectan las oportunidades de supervivencia y reproducción de los organismos, y se acumulan con el tiempo a una velocidad más o menos constante.

La mayoría de los biólogos creen que la adaptación ocurre fundamentalmente por etapas, mediante la acumulación por selección natural de variaciones genéticas ventajosas de efecto relativamente pequeño. Las macromutaciones, por el contrario, producen efectos drásticos, fuera del rango de variación normal de la especie. Se ha propuesto que quizá hayan sido responsables de ciertos rasgos adaptativos o de la aparición de novedades evolutivas, aunque, dado que las mutaciones suelen tener efectos muy nocivos o letales, esta vía se considera actualmente poco frecuente.

Recombinación genética

La recombinación genética es el proceso mediante el cual la información genética se redistribuye, con la cual se produce variación en la descendencia y diversidad dentro de cada especie.

Variaciones en la expresión de los genes, involucrados en la herencia

También existen formas de variación hereditaria que no están basadas en cambios de la información genética. El proceso que produce estas variaciones deja intacta la información genética y es con frecuencia reversible. Este proceso es llamado herencia epigenética que resulta de la trasmisión de secuencias de información no-ADN a través de la meiosis o mitosis; y puede incluir fenómenos como la metilación del ADN o la herencia estructural. Se sigue investigando si estos mecanismos permiten la producción de variaciones específicas beneficiosas en respuesta a señales ambientales. De ser éste el caso, algunas instancias de la evolución podrían ocurrir fuera del cuadro típicamente darwiniano, que evitaría cualquier conexión entre las señales ambientales y la producción de variaciones hereditarias; aunque recordando que indirectamente el origen del proceso en si mismo estarían involucrados genes, como por ejemplo los genes de la enzima ADN-metiltransferasa, histonas, etc.

Sobrevivencia diferenciada de características

Al mismo tiempo que la mutación puede crear nuevos alelos, otros factores influencian la frecuencia de los alelos existentes. Estos factores hacen que algunas características se hagan frecuentes mientras que otras disminuyen o se pierden completamente. De los procesos conocidos que influyen en la persistencia de una característica, o más precisamente, en la frecuencia de un alelo podemos mencionar:

– Selección natural
– Deriva genética
– Flujo genético

Selección natural

La selección natural consiste en la reproducción diferencial de los individuos, según su dotación genética, y generalmente como resultado del ambiente. Existe selección natural cuando hay diferencias en eficacia biológica entre los individuos de una población, es decir, cuando su contribución en descendientes es desigual. La eficacia biológica puede desglosarse en componentes como la supervivencia (la mortalidad diferencial es la tasa de sobrevivencia de individuos hasta la edad de reproducción), la fertilidad, la fecundidad, etc.

La selección natural puede dividirse en dos categorías:

– La sexual ocurre cuando los organismos más atractivos para el sexo opuesto debido a sus características se reproducen más y aumentan la frecuencia de estas características en el patrimonio genético común.
– La ecológica ocurre en el resto de las circunstancias (habilidad para obtener o procesar alimento, capacidad de ocultación, huída o de defensa, capacidad para resistir fluctuaciones ambientales, etc.)

La selección natural trabaja con mutaciones en diferentes formas:

– La purificadora o de fondo elimina las mutaciones perniciosas de una población.
– La positiva aumenta la frecuencia de mutaciones benéficas.

La de balanceo mantiene las variaciones dentro de una población a través de mecanismos tales como:

– La sobredominancia o vigor híbrido,
– La selección dependiente de la frecuencia,
– El papel central de la selección natural en la teoría de la evolución ha dado origen a una fuerte conexión entre ese campo y el estudio de la ecología.

Las mutaciones que no se ven afectadas por la selección natural son llamadas mutaciones neutras. Su frecuencia en la población está dictada por su tasa de mutación, por la deriva genética y el flujo genético. Se entiende que la secuencia de ADN de un organismo, en ausencia de selección, sufre una acumulación estable de mutaciones neutras. El efecto probable de mutación es la propuesta de que un gen que no está bajo selección será destruido por las mutaciones acumuladas. Éste es un aspecto de la llamada degradación genómica.

La selección de organismos por sus características deseables, cuando es provocada por el hombre, por ejemplo para la agricultura es llamada selección artificial. La evolución baldwiniana se refiere a la forma en que los seres vivos capaces de adaptarse durante su vida, pueden producir nuevas fuerzas de selección.

Deriva genética

La deriva genética describe las fluctuaciones aleatorias en la frecuencia de los alelos. Esto es de especial importancia en poblaciones reducidas, donde las posibilidades de fluctuación de una generación a la siguiente son grandes. Estas fluctuaciones en la frecuencia de los alelos entre generaciones sucesivas puede producir la desaparición de algunos alelos de una población. Dos poblaciones separadas que parten de la misma frecuencia de alelos pueden derivar por fluctuación aleatoria en dos poblaciones divergentes con diferente conjunto de alelos (por ejemplo, alelos presentes en una población y que desaparecieron en la otra).

Muchos aspectos de la deriva genética dependen del tamaño de la población (generalmente abreviada como N). En las poblaciones reducidas, la deriva genética puede producir grandes cambios en la frecuencia de alelos de una generación a la siguiente, mientras que en las grandes poblaciones, los cambios en la frecuencia de los alelos son generalmente muy pequeños. La importancia relativa de la selección natural y la deriva genética en la determinación de la suerte de las nuevas mutaciones también depende del tamaño de la población y de la presión por la selección: Cuando N × s (tamaño de la población multiplicado por la presión por la selección) es pequeña, predomina la deriva genética. Así, la selección natural es más eficiente en grandes poblaciones o dicho de otra forma, la deriva genética es más poderosa en las poblaciones reducidas. Finalmente, el tiempo que le toma a un alelo fijarse en una población por deriva genética (es decir, el tiempo que toma el que todos los individuos de la población tengan ese alelo) depende del tamaño de la población: mientras más pequeña la población, menos tiempo toma la fijación del alelo.

Los efectos de la deriva genética son pequeños en la mayoría de las poblaciones naturales, pero pueden revestir especial importancia cuando tiene lugar la formación de una población a partir de muy pocos individuos o efecto fundador, o cuando las poblaciones quedan reducidas a muy pocos individuos, es decir, pasan a través de un cuello de botella.

Efecto fundador: Es un proceso frecuente en algunas islas oceánicas, que son colonizadas por unos pocos individuos que genéticamente son poco representativos con respecto a la población de la que derivan.

Un ejemplo que ilustra este efecto fundador se encuentra en el grupo religioso amish, fundado en 1771 en Pensilvania por unos pocos matrimonios. En la actualidad el 13% de las 17000 personas que forman el grupo portan en su genotipo un alelo que en homocigosis provoca enanismo y polidactilia. El número de casos registrados en esta población corresponde prácticamente a la totalidad de casos detectados en toda la población mundial. Se piensa que estas 17000 personas descienden de muy pocos individuos, algunos de los cuales eran portadores de este alelo.

Cuello de botella:Se produce cuando una situación en la que, debido a condiciones ambientales adversas u otras circunstancias, la población se reduce drásticamente. Con posterioridad recupera su número, pero a partir de un corto número de individuos. Esta situación puede implicar la desaparición de determinados alelos aleatoriamente o que aumente la frecuencia de otros que en la anterior situación estaban menos representados.

Microevolución y macroevolución

Microevolución es un término usado para referirse a cambios de las frecuencias génicas en pequeña escala, en una población durante el transcurso de varias generaciones. Estos cambios pueden deberse a un cierto número de procesos: mutación, flujo génico, deriva génica, así como también por selección natural. La genética de poblaciones es la rama de la biología que provee la estructura matemática para el estudio de los procesos de la microevolución, como el color de la piel en la población Mundial.

Los cambios a mayor escala, desde la especiación (aparición de una nueva especie) hasta las grandes transformaciones evolutivas ocurridas en largos períodos de tiempo, son comúnmente denominados Macroevolución (por ejemplo, los anfibios que evolucionaron a partir de un grupo de peces óseos). Los biólogos no acostumbran hacer una separación absoluta entre macroevolución y microevolución, pues consideran que macroevolución es simplemente microevolución acumulada y sometida a un rango mayor de circunstancias ambientales. Una minoría de teóricos, sin embargo, considera que los mecanismos de la teoría sintética para la microevolución no bastan para hacer esa extrapolación y que se necesitan otros mecanismos. La teoría de los equilibrios puntuados, propuesta por Gould y Eldredge, intenta explicar ciertas tendencias macroevolutivas que se observan en el registro fósil.

Especiación y extinción

La especiación es la aparición de una o más especies a partir de una pre-existente. Existen varios mecanismos por los cuales esto puede ocurrir. La especiación alopátrica comienza cuando una subpoblación de una especie queda aislada geográficamente, por ejemplo por fragmentación del hábitat o migración. La especiación simpátrica ocurre cuando una especie nueva emerge en la misma región geográfica. La especiación peripátrica, propuesta por Ernst Mayr, es un tipo de especiación que existe entre los extremos de la especiación alopátrica y simpátrica. La especiación peripátrica es un soporte fundamental de la teoría del Equilibrio puntuado. La especiación parapátrica donde las especies ocupan áreas biogográficas aledañas pero hay un flujo genético bajo.

La extinción es la desaparición de las especies. El momento de la extinción es considerado generalmente como la muerte del último individuo perteneciente a una especie. La extinción no es un proceso inusual medido en tiempo geológico – las especies son creadas por la especiación y desaparecen a través de la extinción.

Fuente: Wikipedia Enciclopedia